生成式人工智能技术下风景园林教育个性化人才培养研究
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

教育部人文社会科学研究青年基金项目“新数据环境下浙闽地区山水人居环境地域景观保护与发展研究”(编号:20YJC760079);2024年福建省本科高校教育教学研究重大项目“GenAI驱动风景园林人才培养数智化转型的机制、路径与实证研究”(编号:FBJY20240176);2024年度福建省教育科学规划常规课题“生成式人工智能技术下风景园林教育个性化人才培养研究”(编号:FJJKBK24-088);福建农林大学教育教学改革研究项目“GenAI驱动风景园林人才培养数智化转型的机制、路径与实证研究”(编号:111424002)


Research on Personalized Talent Cultivation in Landscape Architecture Education Under Generative Artificial Intelligence Technology
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    生成式人工智能技术的兴起,为风景园林教育个性化人才培养提供了新契机。当前,风景园林教育尚处于教学资源、过程与评价数字化的初阶探索阶段,且大多基于OBE成果导向教育等底线达成度理念,构建相对“标准化”导向的人才培养模式。响应“AI+教育”变革的风景园林教育研究,很有必要向数智化、个性化方向加强探索。因此,亟待开展生成式人工智能技术下风景园林教育个性化人才培养的教改研究。基于多元智能理论,面向风景园林教育教学,厘清数智化、个性化教改研究新进展的经验与启示。在此基础上,分三个层面、6个维度进行数智化、个性化导向下风景园林教育转型的问题解析,并从探明生成式人工智能(Generative Artificial Intelligence,GenAI)技术驱动风景园林教育教学数智化转型的机制与路径、构建GenAI技术下风景园林教育个性化人才培养新模式两个方面、8个小点提出了系统性的应对思路。以此为指导,选取福建农林大学风景园林国家级一流本科专业建设点为对象,从打造“多元智能+”培养方案、推动“个性化+”人才培养、构建“GenAI+”教育教学体系、建设高质量教学保障体系4个方面,开展GenAI技术下风景园林教育个性化人才培养的初步实践与探索。以期探索“四新”建设、数字赋能等时代背景下风景园林教育高质量发展新路径,也为相关学科专业提供经验与借鉴。

    Abstract:

    The rise of Generative Artificial Intelligence technology presents a novel opportunity for personalized talent cultivation within the field of landscape architecture education. Currently, the domain of landscape architecture education remains in the nascent stage of exploring the digitalization of teaching resources, procedures, and evaluations. Moreover, most of it is based on the bottom-line achievement concept of Outcome-based Education (OBE) and has established a relatively “standardized” talent cultivation model. In response to the transformation of “AI + Education”, it is necessary for landscape architecture education research to intensify its exploration in the directions of digitalization and personalization. Therefore, it is imperative to undertake research on educational reform concerning personalized talent development within landscape architecture education, particularly in the context of Generative Artificial Intelligence technology. Grounded in the theory of multiple intelligences and focused on landscape architecture education and instruction, it is essential to elucidate the experiences and insights gained from recent advances in digital and personalized educational reform research. On this basis, it then analyzes the problems of transforming landscape architecture education under the guidance of digitalization and personalization from three levels and six dimensions. Furthermore, it proposes systematic countermeasures from two aspects and eight points: clarifying the mechanism and path of the digital transformation of landscape architecture education driven by GenAI technology and constructing a new model of personalized talent cultivation in landscape architecture education under GenAI technology. Guided by this, the research focuses on the national first-class undergraduate major in landscape architecture at Fujian Agriculture and Forestry University. It conducts preliminary practices and explorations of personalized talent cultivation in landscape architecture education utilizing GenAI technology across four areas: creating a “multiple intelligence +” training program, promoting “personalized +” talent cultivation, constructing a “GenAI +” education and teaching system, and building a high-quality teaching guarantee system. We aim to explore the path of high-quality development in landscape architecture education within the context of the “four new” construction and digital empowerment, and to provide valuable experiences and references for related disciplines and specialties.

    参考文献
    相似文献
    引证文献
引用本文
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-10-11
  • 出版日期: