基于无人机多源遥感数据的城市公园绿地生境空间识别研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

上海市“科技创新行动计划”社会发展科技攻关项目“生物多样性和生态服务功能提升工程质量指标体系建立与集成示范”(编号:22dz1202105);上海市绿化和市容管理局科技项目“上海公园绿地海绵城市建设成效评估与优化提升关键技术研究”(编号:G240202)


Research on the Spatial Identification of Urban Park Green Space Habitats Based on UAV Multi-Source Remote Sensing Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    城市公园绿地是城市生态系统中重要的生态基底,其生境空间结构直接关系到生物多样性维持、生态服务供给与景观连通性。当前生境分类方法普遍存在识别精度有限、生态指示性不足、与管理应用脱节等问题。针对上述挑战,从技术路径与生态适用性双重视角出发,构建一套面向城市公园绿地的多源遥感融合生境识别方法。以上海市6个典型城市公园为例,综合运用多光谱影像的光谱指数分析、激光雷达数据的冠层结构提取与正射影像的人工目视解译,建立分层分级的生境分类系统,覆盖从地表覆盖到植被结构的多尺度特征。分类结果共识别出14类城市典型生境类型,分类总体精度为0.843,Kappa系数为0.830,显示出较高的分类一致性与生态有效性。进一步分析表明,不同城市公园间生境类型组成及空间格局差异显著,反映出各自独特的景观结构特征。不仅在城市遥感分类流程上实现技术整合创新,更在生境类型与生态过程之间建立解释关联,为城市生态管理提供空间化支持路径。该方法可拓展用于城市生态监测、绿地生态功能评价与生境优化设计,为遥感生态学方法体系的城市化适应提供案例支撑。

    Abstract:

    Urban Park green spaces serve as essential ecological foundations within urban ecosystems, with their spatial habitat structure playing a pivotal role in sustaining biodiversity, delivering ecosystem services, and improving landscape connectivity. However, existing habitat classification methods often suffer from limited identification accuracy, insufficient ecological indicative capacity, and poor alignment with practical management applications. Addressing these challenges, this study proposes a multi-source remote sensing-based habitat identification approach tailored to urban park green spaces, integrating both technical pathways and ecological applicability. Using six representative urban parks in Shanghai as case studies, the method integrates spectral index analysis derived from multispectral imagery, canopy structure extraction from LiDAR data, and manual interpretation of orthophotos. This approach aims to develop a hierarchical and multi-scale habitat classification system that comprehensively encompasses features from land cover to vegetation structure.A total of 14 typical urban habitat types were identified, with an overall classification accuracy of 0.843 and a Kappa coefficient of 0.830, indicating strong consistency in classification and ecological relevance. Further analysis revealed significant differences in habitat composition and spatial configuration among the parks, reflecting their unique landscape structure characteristics. This study not only achieves technical integration and innovation in urban remote sensing classification workflows but also establishes interpretative links between habitat types and ecological processes. The proposed approach provides a spatially explicit pathway to support urban ecological management. It can be applied to various fields, including urban ecological monitoring, assessing the functions of green spaces, and planning habitat optimization. It provides a case-based contribution to the adaptation of remote sensing ecological methodologies in urban contexts.

    参考文献
    相似文献
    引证文献
引用本文

吴丹,王莹,乐莺. 基于无人机多源遥感数据的城市公园绿地生境空间识别研究 [J]. 园林, 2025, 42 (8): 121-130. 复制

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-06
  • 出版日期: